Movement of diagonal resistivity in fractional quantum Hall effect via periodic modulation of magnetic field strength
Sasaki, Shosuke
Japan

We examine an effect induced by periodic modulation of magnetic field strength in the fractional quantum Hall effect (FQHE). The classical Coulomb energy of the fractional quantum Hall state (FQH state) is linearly dependent on 1/ν, where ν represents the fractional filling factor. This energy varies continuously with ν. The residual Coulomb interactions produce quantum transitions. Then, the binding energy via the transitions yields an energy gap for specific fractional filling factors and no gap for the other fractional filling factors. The strength of the static magnetic field is fixed to yield an FQH state with gap energy, and a periodic magnetic modulation is added to the system. Its resultant diagonal resistivity depends upon the oscillation frequency of the magnetic modulation. Examination of that dependence shows that the resistivity drastically varies at some frequency value, which can be evaluated for several fractional filling factors. These phenomena are strongly dependent upon the energy spectrum of FQH states.
back